AREA

Area of Squares and Rectnagles
AREA= Length x width (DO NOT ADD)

Find the area of the rectangle below.

Solution:

To find the area of the rectangle, use the formula below.

Area = length
$$\times$$
 width
= 5 in \times 12 in
= 60 in²

Area of a Triangle

$$A = \frac{bh}{2}$$

or
$$A = \frac{1}{2}bh$$

Area of Triangles: <

Find the area of the triangle.

$$A = \frac{bh}{2}$$

Area = B x H- Cut In Half!

 $A = 21 \times 8 / 2$

- 1. Multiply 21 x 8 = 168
- 2. Divide: 168/2 = 84

Area of Parallelograms:

A= Base x Height (DO NOT ADD, DO NOT USE SLANTED SIDE)

Find the area of the parallelogram below.

Solution

Area =
$$B \times H$$

= $10 \text{ in} \times 5 \text{ in}$

 $= 50 \text{ in}^2$

Finding Area: Pieces and Wholes

Area = L x W

1) Find the are of Figure 1

48 in x 48 in = _____

2) Find the area of Figure 2

24 in x 24 in = ____

3) Add both together!

2,304 in2 + 576 in2 = _

Zane designed the T-shirt logo shown below.

If x = 4 inches and y = 8 inches, what is the area of the logo?

Solution:

Since this is an unusual shape, break it up into a rectangle and two triangles.

Now, find the area of the rectangle and the area of the two triangles.

$$\begin{array}{lll} A_{\rm rectangle} &=& \left({\rm length} \right) ({\rm width}) \\ &=& (x \, + \, y)(x) \\ &=& (4 \, {\rm in} \, + \, 8 \, {\rm in}) (4 \, {\rm in}) \\ &=& (12 \, {\rm in}) (4 \, {\rm in}) \\ &=& (12 \, {\rm in}) (4 \, {\rm in}) \\ &=& 48 \, {\rm in}^2 \\ \\ A_{\rm top \ triangle} &=& \frac{1}{2} ({\rm base}) ({\rm height}) \\ &=& \frac{1}{2} (y \, - \, x)(x) \\ &=& \frac{1}{2} (8 \, {\rm in} \, - \, 4 \, {\rm in}) (4 \, {\rm in}) \\ &=& \frac{1}{2} (4 \, {\rm in}) (4 \, {\rm in}) \\ &=& 8 \, {\rm in}^2 \\ \\ A_{\rm bottom \ triangle} &=& \frac{1}{2} ({\rm base}) ({\rm height}) \\ &=& \frac{1}{2} (x)(x) \\ &=& \frac{1}{2} (4 \, {\rm in}) (4 \, {\rm in}) \\ &=& 8 \, {\rm in}^2 \\ \end{array}$$

Finally, add the areas of the rectangle and the two triangles.

Area =
$$48 \text{ in}^2 + 8 \text{ in}^2 + 8 \text{ in}^2$$

= 64 in^2