AREA

> Area of Squares and Rectnagles
> AREA= Length x width (DO NOT ADD)

Find the area of the rectangle below.

Solution:

To find the area of the rectangle, use the formula below.

$$
\begin{aligned}
\text { Area } & =\text { length } \times \text { width } \\
& =5 \mathrm{in} \times 12 \mathrm{in} \\
& =60 \mathrm{in}^{2}
\end{aligned}
$$

Area is measured in square units!

1) Count the squares

9 squares total $=9$ meters 2
2) Multiply Lx W
$3 \mathrm{mx} \mathrm{3m}=9$ meters 2

Area of a Triangle

$$
A=\frac{b h}{2} \quad \text { or } \quad A=\frac{1}{2} b h
$$

b
Area of Triangles:

Find the area of the triangle.

$$
A=\frac{b h}{2}
$$

Area $=\mathrm{B} \times \mathrm{H}-$ Cut \ln Half!
$A=21 \times 8 / 2$

1. Multiply $21 \times 8=168$
2. Divide: $168 / 2=84$

Area of Parallelograms:
A= Base x Height (DO NOT ADD, DO NOT USE SLANTED SIDE)
Find the area of the parallelogram below.

Solution

$$
\begin{aligned}
\text { Area } & =B \times H \\
& =10 \mathrm{in} \times 5 \mathrm{in} \\
& =50 \mathrm{in}^{2}
\end{aligned}
$$

Finding Area: Pieces and Wholes

Area = L x W

1) Find the are of Figure 1

48 in $\times 48$ in $=$ \qquad
2) Find the area of Figure 2

24 in $\times 24$ in = \qquad
3) Add both together!
$2,304 \mathrm{in}^{2}+576 \mathrm{in}^{2}=$ \qquad

Zane designed the T-shirt logo shown below.

If $x=4$ inches and $y=8$ inches, what is the area of the logo?

Solution:

Since this is an unusual shape, break it up into a rectangle and two triangles.

Now, find the area of the rectangle and the area of the two triangles.

$$
\begin{aligned}
& \text { A rectangle }=(\text { leng th })(\text { width }) \\
&=(x+y)(x) \\
&=(4 \mathrm{in}+8 \mathrm{in})(4 \mathrm{in}) \\
&=(12 \mathrm{in})(4 \mathrm{in}) \\
&=48 \mathrm{in}^{2} \\
& \text { A top triangle }=\frac{1}{2}(\text { base })(\text { height }) \\
&=\frac{1}{2}(y-x)(x) \\
&=\frac{1}{2}(8 \mathrm{in}-4 \mathrm{in})(4 \mathrm{in}) \\
&=\frac{1}{2}(4 \mathrm{in})(4 \mathrm{in}) \\
&=8 \mathrm{in}^{2} \\
&=\frac{1}{2}(\text { base })(\text { height }) \\
&=\frac{1}{2}(x)(x) \\
&=\frac{1}{2}(4 \mathrm{in})(4 \mathrm{in}) \\
&=8 \mathrm{in}^{2}
\end{aligned}
$$

Finally, add the areas of the rectangle and the two triangles.

$$
\begin{aligned}
\text { Area } & =48 \mathrm{in}^{2}+8 \mathrm{in}^{2}+8 \mathrm{in}^{2} \\
& =64 \mathrm{in}^{2}
\end{aligned}
$$

